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DESIGN AND MANUFACTURER OF PARASITIC LOAD RESISTORS FOR
BRAYTON POWER CONVERSION SYSTEM

HEAT ENGINEERING & SUPPLY COMPANY

SUMMARY

The NASA Lewis Research Center is currently engaged in a Brayton-Cycle space
power technology program. The Brayton power conversion system is expected to
have applicability for both solar and radio-isotopes space power systems in the
net power range of 2,25 to 10.5 KWe at 1200 Hertz.

The Brayton rotating unit (BRU) of the Brayton PCS is a constant speed single shaft
unit. The 1200 Hertz alternator shaft is supported by gas bearings with a compressor
overhung on one end of the single shaft and a turbine overhung on the other end of the
single shaft.

The constant speed of the Brayton BRU is maintained by a frequency sensitive para-
sitic type speed control on the electrical output of the alternator. As the net shaft
input power from the turbine varies or as the demand for useful vehicle load varies,
the speed control maintains a constant shaft speed by dissipating the excess gener -
ated power into an electrical parasitic load. Therefore, with a constant input power
to the alternator, the output on the alternator is maintained constant by varying the
amplitude of the parasitic load so that the sum of the useful vehicle load and the para-
sitic load is constant.

The parasitic load, or Parasitic Load Resistor (PLR) consists of nine sections. Each
section is capable of absorbing 2 kw of electrical power at 120 Volts potential and
1200 Hertz, Each section is also capable of rejecting the 2 kw of electrical power

by radiation to space in a hard vacuum.
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INTRODUCTION

Previous work by the contractor on parasitic load resistors for the NASA SNAP-8
Program led to the selection of tubular metal sheath electric heaters as the basic
energy dissipating unit., This is commonly known as the tubular electric heater
throughout industry and is an effective means of converting electrical energy to
heat energy and an effective means of radiating that heat energy. To meet the re-
quirements of the Brayton Program the attachment of these basic resistor elements
(tubular electric heaters) to a radiating plate to provide mechanical supporting
structure as well as a suitable physical configuration for radiation led to the design
concept of furnace brazing the resistor elements into radiator plates. The selection
of nine individual plates, each containing three resistor elements, was dictated by
the number of steps desired in the parasitic load. Each section is free to expand
and contract independently of the other sections.

A nominal surface temperature of 1250°F was selected as one which would give a
temperature potential for heat radiation without incurring a penalty for excessive
weight in the unit because of reduced strength of materials at high temperatures.

DESIGN

Heat Engineering & Supply Company drawing No. 12193-5, sheets 1 through 4 shows
the final design configuration. Heat Engineering & Supply Company photograph No.
12193-1 gives an overall view of a complete PLR assembly. The detailed design calcu-
lations are given in the Appendix, pages 1 through 23.

On drawing 12193-5, sheet 1, it will be noted that the radiating plates are supported by
bolting to titanium mounting channels, This arrangement provides a thermal as well as
an electrical isolation from the space vehicle. The bolting of the resistor plates to the
titanium mounting channels is shown in detail on sheet 3. Micamat insulation has been
provided between the resistor plate and the mounting channel, and Micamat bushings

page 5




have been used under the titanium bolt and nut to restrict the flow of heat from the
radiator plate into the titanium mounting channel,

Titanium gussets are used in six places on each of the titanium mounting channels.
These gussets were added at a weight penalty after stress analysis showed that such
reinforcement was necessary to meet the design parameters.

Meteorite shields have been attached over each electrical connector of each Calrod
resistor element. The electrical connector at each end of each resistor element is

a ceramic to metal hermetic seal. This seal assembly would be susceptible to damage
from inpact of meteorites and it is even possible that dust could collect on the ceramic
insulator portion of the seal and thereby form a short circuit path from the connector
portion of the seal to the grounded portion which is welded to the sheath of the Calrod
resistor element. These meteorite shields are fabricated of stainless steel tubing and
are welded to a suitable bushing which in turn is welded to the sheath of the Calrod re-
sistor element as shown on sheet 2 of drawing 12193 -5.

The use of the relatively fragile hermetic seals is not dictated by the space environment
but rather by the need to prevent the absorbtion of moisture from the air while the PLR
is in the earth's atmosphere. The magnesium oxide used to insulate the resistor wire
from the resistor sheath (and at the same time conduct heat from the wire to the sheath)
readily absorbs moisture from the air. This moisture can have the simple effect of re-
ducing the insulation resistance from wire to sheath. Also, under very humid atmos -
phere conditions, enough moisture can be absorbed into the magnesium oxide to create
a hazardous steam pressure within the resistor when it is energized. The ceramic to
metal type of hermetic seal is the only one known today capable of meeting the require-
ments of this application.

Flexible nickel braid is used for the electrical connections between the individual re-
sistor elements. The selection of nickel over a more common conductor such as copper
was made because of the requirement to weld rather than hand torch braze the points of
electrical connection. The cold terminal of the individual resistor elements and the
metallic cap portion of the ceramic to metal seal are both pure nickel. Therefore, nickel
was selected as an ideal metal for the flexible braid electrical connections. Fiberglass
sleeving is installed over the flexible nickel braid in those areas which are not covered
by the meteorite shield. This is done to prevent a possible build up of meteorite dust

on the conductor which could possibly lead to an electrical short circuit.

Sheet 4 of drawing 12193 -5 shows that each group of three resistor elements comprising

the elements of a given radiator plate are wired in a single phase, parallel configuration,
This allows the PLR to provid three, balanced, three phase inclements of electrical load.
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PROTOTYPE TESTING

It was recognized at the start of the contract that prototypes would have to be built

and evaluated to prove the design calculations before the full quantity of PLR assem-

blies could be manufactured. The most important considerations to be proved by 4
prototype evaluation were the brazing method, the ability of the radiator plates to |
remain dimensionally stable in thermal cycling operation, the temperature uniformity

that could be expected in the radiator plates and the adequacy of the iron titanate coat-

ing to withstand the service. This question of the iron titanate coating was particularly

relevant because the subcontractor, Plasmadyne, although having had many years of

experience with plasma coating, had never used this specific compound. Further, the

work performed by Pratt & Whitney Aircraft under contract to NASA did not involve

testing the coating as applied to a heat generator; the samples coated and tested by

this contractor were heated by an external heat source in a vacuum chamber and there-

fore experienced much slower changes of temperature than were to be expected with

the PLR under this contract.

It was decided to test a radiator plate assembly for temperature uniformity in operation
and dimensional stability, then have that same plate, if satisfactory, plasma sprayed
with the iron titanate and repeat the thermal cycling tests with the coating in place.

As reported in "Discussion of Test Procedures and Results" the initial tests on the proto-
types for temperature uniformity and dimensional stability were excellent.

The prototype was then grit-blasted and plasma sprayed with the iron titanate coating.
The appearance of the coating was excellent with only one or two small pitted areas
detectable under microscopic examination. In consultation with the subcontractor,
Plasmadyne, these pits were caused by an operational procedure which could be changed
and the surface defect avoided on the production units. It was further learned that re-
pairing such a surface defect is not difficult.

Tests were conducted on the coated plate by applying 60 Hertz power at the appropriate
voltage level. The temperature uniformity of the coated plate appeared excellent, al-
though no different from the tests run on the uncoated surface. The test was continued
for four hours at full power with a surface temperature in excess of 1300°F. It was the
intention to run eight hour tests every day for several weeks to be sure that the coating
was stable and did not experience any detrimental changes because of thermal cycling.
When the power was removed at the end of this initial four hour run the coating "popped"
off of the plate in the form of small flakes and powder. This occured uniformly over the
entire coated surface.
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The failure of the coating was discussed in a conference with NASA engineers and the
coating subcontractor, Plasmadyne. The most logical theory presented was that the
rapid contraction of the radiator plate beneath the coating resulting from the instan-
taneous removal of power set up stresses that the coating could not stand and it dis -
integrated. The coating subcontractor offered the possibility of using a "'staged coat-
ing" as a solution to the problem. This would involve applying a number of thin coat-
ings, starting with pure stainless steel powder at the radiator surface, then using a
mixture of ever higher percentages of iron titanate and lower percentages of stainless
steel powder until the outer surface was pure iron titanate. The contract did not pro-
vide for the time or expense involved in such a development program and the decrease
in emissivity of an oxidized stainless steel condition from that of the iron titanate did
not appear to justify the investment of time or expense. It was, therefore, agreed
that a comparable surface condition would be achieved by deliberately oxidizing the plates
as part of the contract. Therefore the coating was formally deleted from the contract.

Thermal cycling tests were conducted to determine the dimensional stability of the units
under repeated heating and cooling. The dimensional change stabilized at a total dis-
tortion of 0.05" and after two weeks of continued cycling without any further distortion
the tests were discontinued as having established that the assembly is dimensionally
stable under predicted operating conditions.

In the original concept, it was planned that radiographic inspection would be used to
determine the porosity of thé brazed joint between the resistor elements and the plates.
This joint was to have less than 20% porosity as determined by X~-Ray. Three proto-
type units were built varying the brazing technique and all three appeared to be in ex -
cess of minimum specifications as judged by radiographic inspection. However, con-
tradictory results were obtained from different radiographic inspectors as to the per-
centage of voids in the brazed joint. A cross check was made by ultrasonic inspection
and again contradictory interpretations were given by qualified laboratory inspectors.
Therefore, it was decided to operate each section at a temperature substantially in
excess of operating temperature for a minimum of eight hours and judge the quality of
the brazing by actual performance rather than the inconclusive inspection procedures.
Each section was tested at a temperature in excess of 1350°F and carefully inspected
for uniformity of temperature because any detrimental voids in the braze joint would
cause hot spots. It was agreed that to be detrimental a hot spot would have to be visible.
On none of the sections tested was any discontinuity detectable.
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PRODUCTION TESTING

In consultation with NASA engineers, a plan of test procedures for the components
and assemblies was worked out and set up as a minimum program. This involved
electrical testing of the individual Calrod resistor elements for dielectric strength,
insulation resistance, ohmic resistance and X-Ray examination of the resistor coil
inside each resistor element for evidence of integrity of manufacture.

Helium testing was selected as the method for assuring the integrity of the weld of
the hermetic seal to the adaptor bushing and the weld of the adaptor bushing to the
sheath of the individual Calrod resistor element. Helium leak testing was a final
test although a preliminary test using dye penetrant per MIL-I-6866 was to be used
to detect any gross defects in these same welds. Helium leak testing would also
prove the integrity of the hermetic seal itself and this was deemed advisable because
there are furnace brazed joints inside of the seal which are not visible for inspection
by dye penetrant or other means. Thus, the helium leak testing would disclose any
hidden defects in these hermetic seals.

For more detailed discussion refer to the section '"Discussion of Test Procedures
and Results".

DISCUSSION OF CALCULATIONS

As covered on page 5, previous experience led to the selection of the basic design, that
of metal sheath tubular heaters, brazed to a radiating plate for supplementary heat
transfer surface. The weight goal of a maximum of 75 pounds set forth in the NASA
specifications led to the cross section shown on page 13. Actually this is the final
machined configuration and the part shown was made of plate 3/4" thick with the bulk
of the material machined away for lightening.

Similarly, titanium channels and mounting hardware were substituted for stainless
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steel in order to accomplish further weight reduction and bring the weight within the
goal established.

Once the configuration necessary from a heat transfer stand point and a weight stand
point had been determined, it was then necessary to evaluate the proposed design from
a stress basis, using the parameters of shock, vibration and acceleration set forth in
the NASA specifications. The calculations of pages 1 through 23 of the appendix showed
that the desired configuration would meet the weight and heat transfer requirements and
would withstand the stresses imposed by the predicted flight conditions.

The one exception to the spress analysis is the case of the 18 electrodes mounted nine

to each side channel for the electrical connections to the parasitic load resistor. NASA
had not defined the harness arrangement to the parasitic load resistor, but in a "flyable"
unit these 18 electrodes would be eliminated. These 18 electrodes allow multiple connects
and disconnects of the parasitic load resistor without potential undue stress and strain on
the ceramic terminals of the resistor elements of the parasitic load resistor.
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DISCUSSION OF TEST PROCEDURES AND RESULTS

The temperature profile of one resistor plate was measured carefully to verify the
predicted temperature uniformity derived on page 22. The test setup used is shown
on page 37 as is the measured temperature profile.

Because the temperature profile test was conducted in air rather than in a vacuum, it
was necessary to operate at a substantially higher power level than would be required
in space to obtain the plate temperature desired. This is because substantial heat is
carried away from the assembly by natural convection currents even though steps were
taken to reduce them as much as possible. This increased operating power level in-
creases the temperature gradient beyond that which will be experienced by radiation
heat transfer only. Similarly, convection current accentuates the rate of temperature
decay at the ends of the part although even in space the heat lost through the micamat
insulator and the mounting hardware will cause some temperature decay as well as the
heat carried out into the cold section of the individual resistor elements.

In spite of these pessimistic conditions, the measured temperature profile was excellent.

After the temperature profile was measured, one plate was operated at this same power
and temperature level for eight hours per day for two weeks to determine the dimensional
stability. Each morning, before energizing the plate, it was set on a flat surface and the
distortion measured. After the third day of testing, there was no further measurable
change in the configuration of the plate and after two weeks this test was discontinued be -
cause the dimensional stability appeared to have been established. The distortion shown
is quite reasonable and acceptable to NASA engineers.

The helium leak testing of the welds of the bushing to the resistor sheath, the seal to the
bushing as well as the integrity of the brazed joints within the seal was accomplished by
the spray method. The vacuum sensing line for the leak detector was attached to the end
of the seal and at this time the weld of the seal to the resistor cold terminal had not been
accomplished. Therefore, a vacuum pull at this point could pull helium in from any leak
in either of the two welds or in any of the joints in the seal itself. The helium was care-
fully sprayed around the joints to be tested and the leakage rate measured. The number
of leaks detected was kept to 2 minimum by making careful dye-penetrant inspection of
the two welds before submitting the assemblies for testing but even so some very small
leaks were detected and repairs made as shown by the certified helium leak test reports.

After the welding of the nickel braid to the end of the seal, which welding also joined the
seal to the cold terminal of the resistor, there was no longer any way to conduct a helium
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leak test. Therefore, a test was devised which was not listed in the NASA specifications,
wherein the entire assembly was soaked for 24 hours in water. After removal it was
necessary to blow the water out of the braid and the fibreglass sleeving covering it and
then high potential and insulation resistance tests were conducted to clarify that there
were no leaks. In only one case was a leak found and this was in the epoxy potting of one
of the electrodes and the repair of the potting corrected this difficulty.
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DESIGN AND MANUFACTURE OF PARASITIC LOAD RESISTORS FOR
BRAYTON POWER CONVERSION SYSTEM

HEAT ENGINEERING & SUPPLY COMPANY

ABSTRACT

The contract covered the design, manufacture and testing of Parasitic Load
Resistors to dissipate 18 KWe electric power at 120 Volts and 1200 Hertz by
coverting the electrical energy to heat energy and radiating that energy to
hard vacuum.
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/6. BOLTING Ibs
PLATE To CHANNELS . 4/5&0’/0»/, 7 sEcTioN S

36 screws Ja'RM X 1% LG TiTANIWKM = 0.359%
36 MUTS GHEX @ .00392"EA T7 = 0.4

¥
26 wasHers T Heson'Zyiox o @ wornteg = 6,045
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002 (e) Datimam nbr res/stor clemente ~ fried by NASA @ &7,
402 (F) Thermal expansion. 2 3% x 12" T=/250°F
¢ = o.oooo.//Z /'n//’n//; to Isvsrr  (Meta/s //4”(/5[,,/(/ 7274 @d{/,dzg/\
Wizse = W;y;)(/f- ¢ A7) =(3,63)[/'r‘(0.00ao //z)(//Xo)]
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— OYMBOLS —

Symbol Definition

W Weight per unit length, lb./in.

W Weight, lbs.

0,8 Denetty los, /in?
C Diameter, in.
s Radius, in.

L 2 Length, in.
h Section height
3 Acceleration in]sec?
g Grovitational constant, 386 in/sec?
G Gravitational units (=*4) dimensionless
£ Frequency, cycles | sec.

E Modulus of elasticity, lb./in?
V Volume | in.2

— SUBSCRIPTS —

Motetion Definition Notation Definition
C Calred P Panel
T Inside S Terminal Shield
RT Healer Rod t Titamium
Tube Channel
R Radigtor T Total
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L. Dynamic Loading
A, Mon Opem/‘/hq

Il
I
X
Y
¢ Y
SHOCK. 20 20
1% (waxy 1.9 (max)
VIBRATION 20 20
23.5(mar)  A3.S5(max)
16,0 /5.0
ACCELERATION 2 z
“COMEINEDMmar) 455 455
8. Operating
* X 'ﬁY
SHOCK. Za. 3q.
ViBRATION .£5q. .2SQ.
Accerewatirn  lg. lg.

*Ref Para 22.1, M1."B" Spec. Ne. P1224 -1 simvlHancovs Javnch lsads,”

TOTAL UNIT WEIGHT EST 7,69 (P Ib)

W ~Z

20 20

T18(max)  T8(max) 533
8.0 20 B MHoys

23.5mav.y 23.5(max)4o-Rdvepd

6.0 150 b =200 o
6 5
49.5 4.5
+ 4 - X
3q. .
.R4g. 259,
5zq. —
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IOT . Load Analysis

(A Y-Y Avis ~ / /ﬁd/w'c/ua//@a/ye/, section suprortec

between Titanium channels.

Channels acswzwc/ ng/c/ wn’A res,cecf fo 7%( 215,

AL i
SN \\\\\\\\\ \\

il )i i
" SV / Y
e ﬂ_Q,WJ%D=22<> -

-]

T

B

w=.0342 %, + 1282 "%/,
w= 1624 "*/y,
S‘fress(’) S = me, C

I

2 &
Mn’h:u(.: é'ét// = 8_//é2¢ /b//;,‘400 /n
Afﬁmz. =8./2 /'IZ-/é.
A FEFS fimav/c /"f('/('{/}gb’/d/‘ /7’/0(1’/9/ 07‘?‘ /aa//}(/cfagg 5@0/,'0,7

¥
,0G2 I i '4'5-
* ~ (25— |~ 5] 1 o5
Ly
—— 25 | — (25 = (26— —— 25
- 3% (Ref.) -—

O) rernilas fer Stress ¢ Shain, ©J. Bovrk, M Graw -1/, 4% £/, 1945
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Cerﬁm(d of Sech\én
C‘? CZ)AV == AiYas
A = |(,) )— 093 in* Y =

!

< 32

A, - 65/2)/")—.%//”1 Y, =.256
A = 10703 in*

C=7 =

= ./093/§é) +.%/(25‘é> _.0084z2 +. 24C(
/,0703 i

[.O7
C=.23%in

Moment of Inertia of Section
(2) _
=g (1.),

(l)l':-—(,é)3 =475 x1075

(2 I;Z“g’z <60 % 1070 ?

I t Ady™-a
"(r ) (o )%+ 03T

I,—~z-(24J -J7é,f+ﬁ(z4b +J¢e‘)(279>
I.= /67x/672+5)7x10° =454 % /073
I= 2299 x 10"% /0. ?
Stress k. = ”}C = %:;fié’nx-//i“gp/iihh < ¥2.3 6,05/
S

= 82.3 6 pst

]

(3) T

> >
i

2) Engr. Mech., Cox ¢ /D/um-/rc(«‘, Van /I/O:ﬂ;m(/ i<
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IR Gl e
2. /ndrvidual Pane/ ca/rod seal. s/eeve . Cants jever

al Lach End
(M)W"T/Y =é ‘\J»éz—-f;’//g/ fwz,éz_+“)3 wéf 7+ g é¢

= L(03¢2)(#28)% 0467 (2.7)+.0285(2)

#0379 (3)+ 0054 [¢25)
= lé// /”7"/55.

z =7 (r*r% G, Jer ho Mow 54@//5;

Shay = Momax _ 6 (4) (248 _ o4, &
T Z 72467 194%) 7426 p
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(8) Z2-2 Axic - 7071'4//‘)@/)?/ fa/j/,m/‘/éd éj

,7_/75?/)/'14//‘7 C/)cf_r‘/j/"/ 59/5‘

*L/t;_ le T g2l 23— 0k =44 s
'/
. % Ascume Cants fever beanm wilt) @4 C‘//‘
I / bé’.d?//') §a/)/wﬁ7//:‘)f L 746 weg//z‘ /umfec‘/
2 ' : =4
/ at /z, = ¢ a )n.
- /,
/ ‘
Fﬂ% Mmax = Lale = 1(29.0) (¢9) = 6¢ h~1b
H
W:_Cf\ \
' Z=3Ay"+ 57 = 2358 w5
C = SAY =//8 /n
/-—9‘/77609 ~ S A
o 1 ’e““—“‘ o g 3
< e | Stax = el _ 6¢x//8
z
N CHANNE L 388
= 3/ 8 6/39‘.
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(C) Stress Summamf
1. Combined Loacls

5Ul0§ y5+€m S‘Hess:&hsf X 5 émax Sm ax 5&708
Rod Cantilevev 942 G 50.5 4807p§/'yes
Punel between chamels 82.26 50.5 4150 Yes
Titanium chaunel 2186 50.5 /600 VYes

*Basecx OWn 5‘\\/\/\\)\‘&‘0\“-4:00\\)% '3'{(\0( \4\) Vigom‘\' iovx éacce\emf{'ion,
Axes 6f vnit net Ae(—'\V\@,C\ sc each \oac\jv(g condition
15 assumed to (e occuring with that Section in

the Z-ays.

2. Maximun cingle load cond)tion

Subsystem Strese=(onst X6 Guax S Safe
Rod Confilever 9526 R3.85 2237psi Yes
Hinel vetweeon chamele 82.36 235 /930 VYes
Titauiom ebanne! 386G 723.S 747 Yes
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IV. Resorant Frequency Awalysis
A. Calrod Seal Cant/lever
Cystribute all the pieces attacked 1o the calrod
along the 47" /eng% , ancl freat Lhis as a cantilever
loaded by its cwn weight
T=692v152in* E=30x)0° /%')1.’ g~ 386 /n sec, *
,4=Vf/r(307‘-,/%‘): 176 1n™

:..W— :_-
Vi AL
Tedal weight of Cantilever W=.0342 (4.25)+. 0285 +, 0447
W~=.2972 /b +.008§4 + 0213
= 28572 = /6/
6= Fetaay 3T’
The 14ecyuency of vibvation of the .« “mode /sj)ven 2s
tg//OLL}S‘. '
(8) Fi= SEL° ith poots L KL K3t

27 L8975  4.694 7955
KL= 1815 =425 k=44
LA=4.094 £=428 k=110

(3) -\ £1 _ lzox0° 5.52%107 3.96x10" —
. 4 v/
e A (3_;43][." 1 )= §32010% Ke ™

£ = (5,32x/0*}/.4¢_/ = [02¢ cps

A= (5.32x18)(1.10)* = (437 eps
S Timoshenko, Vibration Aeblemsin Engineering, Van Nostrand, 3284, /955
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5, Shielding Sleeve Cantilever

E= 30 /0% 4= 550 " See™ & = .29 'b/l'n3

—
A = \ [(Boviv®)1.37%163 340 wis-

/32xi07" 2.9vi0"! ) UE'S,SXM? = 4.84 )(/Oft
K, = LEL> - 93%

= 4(0q4 - -
KZ —‘{""' - 2.33

@

Y 94 104
Fi=92 W’ié%‘/e Ke® =7.1%100° ki

Fl = 6783 Gp%

C. Tndividual pene (, C(a_mpecl at Titanivm chaunels .
L =55 K™ T=0.299%/0° in? A= 100" 9= 586" e

¥=.24"%w3 E£= 30x/0°¢ _le= R0 n,

2.93x/0%

a = ]/;EI ﬁ ' - (SOx/o“YZ-%oxléz)(S.%(ov?jb‘);
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